Pi-Network Analysis

CLC Pi-network Analysis with Lossless Elements

To match between impedances $Z=2000$ ohms and $Z=50$ ohms
Forward Direction, network terminated in 50 ohms
Tuning 130° pi-network to resonance. Zin $=2000$ ohms, Zload $=50$ ohms. Initial network parameters at resonance with lossless elements: $\mathrm{Xa}=-219.89571936$ ohms, $X b=242.24452283$ ohms, $X c=-47.82388655$ ohms ohms.

$\begin{array}{lll}\mathrm{Xa}=-\mathrm{j} \cdot 219.89571936 & \mathrm{Xb}=\mathrm{j} \cdot 242.24452283 & \mathrm{Xc}=-\mathrm{j} \cdot 47.82388655 \\ \mathrm{Za}=\mathrm{Xa} & \mathrm{Zb}=\mathrm{Xb} & \mathrm{Zc}=X \mathrm{C}\end{array}$
$\mathrm{Z} 1=\frac{1}{\frac{1}{\text { Zout }}+\frac{1}{\mathrm{Zc}}}$
$\mathrm{Za}=-219.89571936 \mathrm{j}$
$\mathrm{Z} 1=23.88828935-24.97526976 j$
$\mathrm{Zb}=242.24452283 \mathrm{j}$
$\mathrm{Zc}=-47.82388655 \mathrm{j}$
Z2 $=\mathrm{Z} 1+\mathrm{Zb}$
$\mathrm{Z} 2=23.88828935+217.26925307 j$
$\mathrm{Zin}=\frac{1}{\frac{1}{\mathrm{Z} 2}+\frac{1}{\mathrm{Za}}}$
$\mathrm{Zin}=2 \times 10^{3} \quad$ With lossless elements Zin is a purely resistive $2000+\mathrm{j} 0$ ohms when the network is resonant.

Fig 24-1

CLC Pi-network Analysis with Lossless Elements

To match between impedances $Z=2000$ ohms and $Z=50$ ohms
Reverse Direction, network terminated in $\mathbf{2 0 0 0}$ ohms
Tuning 130° pi-network to resonance. Zin $=2000$ ohms, Zload $=50$ ohms. Initial network parameters at resonance with lossless elements: Xa = - 219.89571936 ohms, $X b=242.24452283$ ohms, $X c=-47.82388655$ ohms ohms.

Zin $=50 \quad$ With lossless elements Zin is a purely resistive $50+j 0$ ohms when the network is resonant.

Fig 24-2

CLC Pi-network Analysis with Real Elements, Untuned

To match between impedances $Z=2000$ ohms and $Z=50$ ohms
Capacitor $Q=1000$, Inductor $Q=200$
Forward Direction, Network Terminated in 50 ohms
Reactance values unchanged from those during calculations with lossless elements Tuning 130° pi-network to resonance. Zin $=2000$ ohms, Zload $=50$ ohms. Initial network parameters at resonance with lossless elements: Xa=-219.89571936 ohms, $X b=242.24452283$ ohms, $X c=-47.82388655$ ohms ohms.

$\mathrm{Z} 2=\mathrm{Z} 1+\mathrm{Zb}$
$\mathrm{Z} 2=25.10063+217.29419 \mathrm{j}$
$\mathrm{Zin}=\frac{1}{\frac{1}{\mathrm{Z} 2}+\frac{1}{\mathrm{Za}}}$
Zin $=1.88956 \times 10^{3}-21.95809 j$

Fig 24-3
Note that with lossy elements, and with the reactance values of the original lossless elements left unchanged, the resistive input impedance is now somewhat less than 2000 ohms, and academically, a significant amount of capacitive reactance has been introduced by the resistive loss in the elements, indicating that a perfect conjugate match no longer exists. However, from a practical viewpoint, the conjugate mismatch is so small as to be negligible with respect to loss in delivery of power to the load, and can be ignored.
Resistive loss due to $\mathrm{Rb}=0.2228 \mathrm{~dB}$.

Conjugate Mismatch	Reflection Coefficient	Conjugate Power	Conjugate SWR
1.0594	0.0288	0.9992	0.0036 dB

CLC Pi-network Analysis with Real Elements, Untuned

To match between impedances $Z=2000$ ohms and $Z=50$ ohms

$$
\text { Capacitor Q = 1000, Inductor Q = } 200
$$

Reverse Direction, Network Terminated in 2000 ohms

Reactance values unchanged from those during calculations with lossless elements

Initial network parameters at resonance with lossless elements: $\mathrm{Xa}=-219.89571936$ ohms, $\mathrm{Xb}=242.24452283$ ohms, $\mathrm{Xc}=-47.82388655$ ohms ohms.

$$
\text { Zin = } 49.829-j 2.8837
$$

$\mathrm{QC}=1000$
$\mathrm{Xc}=-\mathrm{j} \cdot 219.89572$
$\mathrm{Ra}=\frac{-\mathrm{Xa}}{\mathrm{j} \cdot \mathrm{QC}}$
$\mathrm{Za}=\mathrm{Ra}+\mathrm{Xa}$
$\mathrm{Z} 1=\frac{1}{\frac{1}{\mathrm{Zout}}+\frac{1}{\mathrm{Zc}}}$
$\mathrm{Z} 1=24.10035-217.22206 \mathrm{j}$
$\mathrm{Z} 2=\mathrm{Z} 1+\mathrm{Zb}$
$\mathrm{Z} 2=25.31157+25.02247 \mathrm{j}$
$\mathrm{Zin}=\frac{1}{\frac{1}{\mathrm{Z2}}+\frac{1}{\mathrm{Za}}}$
Zin $=49.82903-2.88367 j$

Fig 24-4
$\mathrm{QL}=200$

$$
j=\sqrt{-1}
$$

$\mathrm{Xb}=\mathrm{j} \cdot 242.244523$
$\mathrm{Xa}=-\mathrm{j} \cdot 47.823887$
$\mathrm{Rb}=\frac{\mathrm{Xb}}{\mathrm{j} \cdot \mathrm{QL}} \quad \mathrm{Rc}=\frac{-\mathrm{Xc}}{\mathrm{j} \cdot \mathrm{QC}}$
$\mathrm{Zb}=\mathrm{Rb}+\mathrm{Xb}$
$\mathrm{Zc}=\mathrm{Rc}+\mathrm{Xc}$

Element Loss Resistances

$$
\mathrm{Za}=0.04782-47.82389 \mathrm{j}
$$

$$
\mathrm{Zb}=1.21122+242.24452 \mathrm{j}
$$

$$
\mathrm{Zc}=0.2199-219.89572 \mathrm{j}
$$

$\mathrm{Ra}=0.04782$
$\mathrm{Rb}=1.21122$
$\mathrm{Rc}=0.2199$

Note that with lossy elements, and with the reactance values of the original lossless elements left unchanged, the resistive input impedance is now somewhat less than 50 ohms, and academically, a significant amount of capacitive reactance has been introduced by the resistive loss in the elements, indicating that a perfect conjugate match no longer exists. However, from a practical viewpoint, the conjugate mismatch is so small as to be negligible with respect to loss in delivery of power to the load, and can be ignored. Loss due to $\mathrm{Rb}=0.2228 \mathrm{~dB}$.

Conjugate Mismatch SWR	Reflection Coefficient RHO	Conjugate Power Delivered	Conjugate Mismatch Loss
1.0596	0.0289	0.9992	0.0036 dB

CLC Pi-network Analysis with Real Elements, Retuned

Capacitor $Q=1000$, Inductor $Q=200$
To match between impedances $Z=2000$ ohms and $Z=50$ ohms

Forward Direction, Network Terminated in 50 ohms

Reactances retuned to resonance after inserting real elements
Tuning 130° pi-network to resonance. Zin $=2000$ ohms, Zload $=50$ ohms. Initial network parameters at resonance with lossless elements: $\mathrm{Xa}=-219.89571936$ ohms, $X b=242.24452283$ ohms, $\mathrm{Xc}=-47.82388655$ ohms ohms.

$\mathrm{Z} 1=\frac{1}{\frac{1}{\mathrm{Zout}}+\frac{1}{\mathrm{Zc}}}$
$\mathrm{Z} 1=22.4827-24.84795 \mathrm{j}$
$\mathrm{Z} 2=\mathrm{Z} 1+\mathrm{Zb}$
$\mathrm{Z} 2=23.69392+217.39658 \mathrm{j}$
Z in $=\frac{1}{\frac{1}{\mathrm{Z} 2}+\frac{1}{\mathrm{Za}}}$
Zin $=2 \times 10^{3}+5.58927 \mathrm{j} \times 10^{-6}$
$\mathrm{QL}=200$
$\mathrm{Xb}=\mathrm{j} \cdot 242.24453156$
$\mathrm{Rb}=\frac{\mathrm{Xb}}{\mathrm{j} \cdot \mathrm{QL}}$
$\mathrm{Zb}=\mathrm{Rb}+\mathrm{Xb}$

$$
\mathrm{Za}=0.21998-219.97874 \mathrm{j}
$$

$\mathrm{Zb}=1.21122+242.24453 \mathrm{j}$
$\mathrm{Zc}=0.04519-45.1905 \mathrm{j}$

Element Loss Resistances

$$
\mathrm{Ra}=0.21998
$$

$$
\mathrm{Rb}=1.21122
$$

$$
\mathrm{Rc}=0.04519
$$

Note that readjustments to the reactance values of each element from those of the lossless case compensate for the reactances introduced by the loss resistance appearing in the real elements, returning (retuning) the network to resonance. As a result, a conjugate match has been re-established in the forward direction.
Resistive loss due to $\mathrm{Rb}=0.2228 \mathrm{~dB}$.

Fig 24-5

CLC Pi-network Analysis with Real Elements

Capacitor Q = 1000, Inductor Q = 200
To match between impedances $Z=2000$ ohms and $Z=50$ ohms

Reverse Direction, Network Terminated in 2000 ohms

Reactances retuned to resonance after inserting real elements
Initial network parameters at resonance with lossless elements: $\mathrm{Xa}=-219.89571936$ ohms, $\mathrm{Xb}=242.24452283$ ohms, $\mathrm{Xc}=-47.82388655$ ohms ohms.

Fig 24-6

CLC Pi-network Analysis with Real Elements

To match between impedances $Z=2000$ ohms and $Z=50$ ohms Capacitor $Q=1000$, Inductor $Q=200$
Tuned in Forward Direction, Network terminated in 50 ohms, then ReCalculated in Reverse Direction Terminated in 2000 ohms

Initial network parameters at resonance with lossless elements: $\mathrm{Xa}=-219.89571936$ ohms, $\mathrm{Xb}=242.24452283$ ohms, $\mathrm{Xc}=-47.82388655$ ohms ohms.

$\mathrm{Z} 1=\frac{1}{\frac{1}{\mathrm{Zout}}+\frac{1}{\mathrm{Za}}}$
$\mathrm{Z} 1=24.11837-217.30266 j$
$\mathrm{Z} 2=\mathrm{Z} 1+\mathrm{Zb}$
$\mathrm{Z} 2=25.3296+24.94185 j$
$\mathrm{Zin}=\frac{1}{\frac{1}{\mathrm{Z} 2}+\frac{1}{\mathrm{Zc}}}$
Zin $=49.13959-5.8441 j$

Element Loss Resistances
$\mathrm{Za}=0.21998-219.97933 \mathrm{j} \quad \mathrm{Ra}=0.21998$
$\mathrm{Zb}=1.21122+242.2445 \mathrm{j}$
$\mathrm{Rb}=1.21122$
$\mathrm{Zc}=0.0452-45.2 \mathrm{j}$
$\mathrm{Rc}=0.0452$
Network first tuned to resonance in forward direction, and then calculated to show amount of conjugate mismatch when going in reverse direction without retuning. Mismatch loss increased to 0.0154 dB from 0.0036 dB when going in reverse direction with reactance values of lossy elements unchanged from being tuned to resonance in forward direction. Total loss, combination of mismatch and resistive losses $=0.2382 \mathrm{~dB}$

Conjugate Mismatch SWR	Reflection Coefficient RHO (ρ)	Conjugate Power Delivered	Conjugate Mismatch Loss
1.1265	0.059	0.9965	0.0154 dB

Fig 24-7

CLC Pi-network Analysis with Real Elements

Capacitor $Q=1000$, Inductor $Q=200$
To match between impedances $Z=2000$ ohms and $Z=50$ ohms

Tuned in Reverse Direction, Network Terminated in 2000 ohms, then ReCalculated in Forward Direction Terminated in 50 ohms.

Initial network parameters at resonance with lossless elements: $\mathrm{Xa}=-219.89571936$ ohms, $\mathrm{Xb}=242.24452283$ ohms, $\mathrm{Xc}=-47.82388655$ ohms ohms. .

$\mathrm{QC}=1000$
$\mathrm{Xa}=-\mathrm{j} \cdot 228.6959$
$\mathrm{Ra}=\frac{-\mathrm{Xa}}{\mathrm{j} \cdot \mathrm{QC}}$
$\mathrm{Za}=\mathrm{Ra}+\mathrm{Xa}$
$\mathrm{Z} 1=\frac{1}{\frac{1}{\mathrm{Zout}}+\frac{1}{\mathrm{Zc}}}$
$\mathrm{Z} 1=27.2818-24.87066 \mathrm{j}$
$\mathrm{Z} 2=\mathrm{Z} 1+\mathrm{Zb}$
$\mathrm{Z} 2=28.53487+225.74279 \mathrm{j}$
$\mathrm{Zin}=\frac{1}{\frac{1}{\mathrm{Z} 2}+\frac{1}{\mathrm{Za}}}$
$\operatorname{Zin}=1.79923 \times 10^{3}-40.35882 j$
$\mathrm{QL}=200$
$\mathrm{Xb}=\mathrm{j} \cdot 250.61345$

$$
j=\sqrt{-1}
$$

$\mathrm{Rb}=\frac{\mathrm{Xb}}{\mathrm{j} \cdot \mathrm{QL}}$
$\mathrm{Xc}=-\mathrm{j} \cdot 54.7973$
$\mathrm{Zb}=\mathrm{Rb}+\mathrm{Xb}$

Element Loss Resistances

$$
\begin{aligned}
\mathrm{Za} & =0.2287-228.6959 \mathrm{j} \\
\mathrm{Zb} & =1.25307+250.61345 \mathrm{j} \\
\mathrm{Zc} & =0.0548-54.7973 \mathrm{j}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Ra}=0.2287 \\
& \mathrm{Rb}=1.25307 \\
& \mathrm{Rc}=0.0548
\end{aligned}
$$

Network first tuned to resonance in reverse direction, and then calculated to show amount of conjugate mismatch when going in fprward direction without retuning. Mismatch loss increased to 0.0127 dB from 0.0036 dB when going in reverse direction with reactance values of lossy element: unchanged from being tuned to resonance in forward direction. Loss due to resistive loss $\mathrm{Rb}=0.2228 \mathrm{~dB}$. Total loss, combination of mismatch and resistive losses = 0.2355 dB

Conjugate Mismatch	Reflection Coefficient RHO (ρ)	Conjugate Power Delivered	Conjugate Mismatch Loss
SWR	Loss		
1.1141	0.0540	0.9971	0.0127 dB

Fig 24-8

Comparison of Lossless vs Real Elements and Forward vs Reverse Directions in Pi-Networks (CLC) Capacitor $Q=1000$, Inductor $Q=200$, Phase Delay 130 Degrees

Pi-network with Lossless Elements
Forward Direction, 50-Ohm Load

$$
\text { Zin }=2000+j 0.0000357787 \quad(\text { Fig 24-1 })
$$

Pi-network with Real Elements, Untuned
Forward Direction, 50-Ohm Load
Reactance values unchanged (Fig 24-3)
Zin = 1889.6-j21.958

SWR = 1.0594, 0.0036 dB Conjugate Mismatch Loss
Pi-network, Real Elements, Retuned
Forward Direction, 50-Ohm Load
Reactances retuned to resonance (Fig 24-5)

$$
\text { Zin }=2000.0+j 0.000005589
$$

Pi-network, Real Elements

Tuned in Reverse Direction with 2000-ohm Load, then ReCalculated in Forward Direction with 50 -ohm Load

$$
\text { Zin = } 1799-j 40.359
$$

(Fig 24-7)
SWR = 1.1141, 0.0127 dB Conjugate Mismatch Loss

Pi-network with Lossless Elements
Reverse Direction, 2000-ohm Load

$$
\text { Zin }=50+j 0.0000002428 \quad(\text { Fig } 24-2)
$$

Pi-network with Real Elements, Untuned
Reverse Direction, 2000-ohm Load
Reactance values unchanged (Fig 24-4)

$$
\text { Zin = } 49.829-j 2.8837
$$

SWR $=1.0596,0.0036$ dB Conjugate Mismatch Loss
Pi-network, Real Elements, Retuned
Reverse Direction, 2000-ohm Load
Reactances retuned to resonance (Fig 24-6)

$$
\text { Zin }=50+j 0.000002021
$$

Pi-network, Real Elements

Tuned in Forward Direction with 50-ohm Load, then ReCalculated in Reverse Direction with 2000-ohm Load

$$
\begin{equation*}
\text { Zin = } 49.14-j 5.844 \tag{Fig24-8}
\end{equation*}
$$

SWR $=1.1265,0.0154 \mathrm{~dB}$ Conjugate Mismatch Loss

Fig 24-9

