

This same basic plan could be used with 6L6GC or 6BG6 as well. The power supply could be simplified & improved.

POWER SUPPLY FOR 75 WATT CLASS "AB2" AMPLIFIER

REF. No. 401-12

CI & C2 = 0.01 pF 2,200V. D.C. WORKING.

TRANSFORMER AND CHOKE DATA FOR 75 WATT AMPLIFIER

401.21/1

Mains Transformer TI (Ref. 401.20)

Secondary:
260-0-260 volts 20 mA; 6·3 volts 1·5 amperes and 6·3 volts 0·3 ampere.

Laminations:

Sankey No. 4A Stalloy I in. stack.

Primary winding for 200, 220, 240 volts: 1640+180+180 turns of 30 S.W.G. S.S.E. wire, DC resistance

- Secondary winding:

 (a) 2300 + 2300 turns of 36 S.W.G. S.S.E. wire, DC resistance
 470 ohms total.

 (b) 60 turns 22 S.W.G. enamel.

 (c) 56 turns 22 S.W.G. enamel.

Magnetising current: 36 mA.

Chokes LI (Ref. 401.20)

70 Hy at 20 mA DC. 2200 Ω DC resistance. HT voltage at output of filter 240 volts DC.

Mains Transformer T2 (Ref. 401.12)

Secondary: 600-0-600 volts 260 mA and 5 volts 3 amperes.

Laminations:

Sankey No. 28A Stalloy 13 in. stack.

Primary winding for mains voltages 200, 220, 240 volts:

800 + 80 + 80 turns of 22 S.W.G. enamel (8 ohms resistance).

Secondary winding:

(a) 5000 turns centre tapped, 28 S.W.G. S.S.E. wire (205 ohms

resistance).
(b) 21 turns 18 S.W.G. enamel.

Magnetising current: approx. 100 mA.

Mains Transformer T3 (Ref. 401.12)

Secondary: 270–0–270 volts 90 mA, 5 volts 2 amperes and 6-3 volts 3-6 amperes.

Laminations:

Sankey No. 4A Stalloy I½ in. stack.

Primary winding for mains voltages 200, 220, 240 volts:

1200 + 120 + 120 turns of 28 S.W.G. S.S.E. wire (37 ohms resistance).

Secondary winding:
(a) 3300 turns centre tapped, 34 S.W.G. S.S.E. wire (320 ohms).
(b) 36 turns 20 S.W.G. enamel.
(c) 43 turns 18 S.W.G. enamel.

Magnetising current: approx. 50 mA.

Swinging Choke L2 (500 volts supply) (Ref. 401.12)

Laminations:

Stalloy No. 4A Stalloy 1½ in. stack.

Gap spacer :005 in.
2000 turns of 24 S.W.G. enamel wire (25½ ohms resistance).

Inductance:

Approx. 7 Hy with 50 mA DC. 2 Hy with 250 mA DC.

401.21/2

TRANSFORMER AND CHOKE DATA FOR 75 WATT AMPLIFIER (continued)

Smoothing Choke L3 (300 volts supply)

Laminations:

Sankey No. 4A Stalloy I in. stack. Gap spacer 015 in.

3400 turns of 26 S.W.G. enamel wire (95 ohms resistance).

Approx. II Hy with no DC. 8 Hy with 100 mA DC.

Output Transformer T4 (75 watts)

Laminations:

Sankey No. 28A Stalloy $1\frac{3}{4}$ in. stack. Gap spacer .015 in.

Ratio 2.74: I to match 4500 to 600 ohms. (Max. out of balance current 20 mA). (Peak AC 250 mA).

Primary winding:

Two sections of 1500 turns each, of 26 S.W.G. D.S.C. wire (73 ohms).

Secondary winding:

Three sections of 370 turns each, of 22 S.W.G. enamel wire (11 ohms) sandwiched with primary sections.

Leakage inductance: less than 0.3%.

Primary inductance:

Approx. 12 Hy with no DC.

12 Hy with 50 mA DC (through both primary sections).

PERFORMANCE DATA FOR 75 WATT AMPLIFIER

401.22/1

PRE-AMPLIFIER

General:

Output load used for measurements is 10,000 ohms at 'E' (Ref. 401.20).

Output voltages measured at 'E'. Measurements made at 1000 c/s.

Input to No. 1 for 10 volts R.M.S. output == 0.5 millivolt.

Harmonic Distortion at 1000 c/s.

Harmonic	% at 10 volts Output	% at 20 volts Output
2nd	′° 0·11 '	0.9
3rd	0.10	0∙75
4th	_	0.27
5+h	<u> </u>	0.09

5th - 0.05 1000 c/s injected at input 1 with distortion less than 0.01% of any harmonic.

Hum Levels:

Hum Levels:
Hum voltage on HT line: 0.05 volt R.M.S.
Hum output at 'E' with first gain control of pre-amplifier at minimum and second gain control at maximum: 0.12 volt of 50 c/s; 0.06 volt of 100 c/s.

OUTPUT UNIT

Frequency Response:

Gain control at maximum. Figures taken at output level of 30 watts. Input applied at 'E' (Ref. 401.20) constant.

	Frequency C.P.S.	No Shunting on Output Transformer	5Ka and -0015µF Shunting (plate-plate)	5Ka and -0015µF Shunting * (plate-plate)	
	50	—I ·6 dB	—I ·6 dB	0·5 dB	
-	100	—0.7 dB	0·7 dB	0 dB	
- 1	400	0 dB	0 dB	0 dB	
	1000	0 dB	0 dB	0 dB	
1	3000	0 dB	0 dB	0 dB	
-	10,000	0·2 dB	2·0 dB	1·6 dB	
١	13,000	i 0.9 dB	—I·6 dB	0·5 dB	
	20,000	2·4 dB	—5·3 dB	1·4 dB	

Input at 'E' at 1000 c/s for maximum output = 4 volts R.M.S.

* Input at 'E' at 1000 c's for maximum output == 10 volts R.M.S.

Hum output across 600 ohm load

50c s 100c/s 0·25 volt 0·13 volt 0·13 volt 0·05 volt

* These figures apply for 8 dB negative feedback.

401.22/2

PERFORMANCE DATA FOR 75 WATT AMPLIFIER (continued)

Operating Voltages and Currents*:

	807 Plates	807 Screen Grids	Each 807 Cathode	300 volts HT Line	78 volts Bias Line	Bias
No drive Max.output	volts 508 475	volts 300 280	mA 47 125	mA 17 43	mA 14 14	volts —78 —78

Harmonic Distortion at 1000c/s (5K Ω and $\cdot 0015 \mu F$ on output transformer):

Harmonic	25 w Out		50 watts Output †		75 watts Output†		70 watts Output*	
, iai mome	Zero	Max.	Zero	Max.	Zero	Max.	Zero	Max.
2	1.0	·34	1:1	-5	.9	·45	1.0	·92
3	.9	∙25	1.3	-62	7.5	5.0	6.0	2.9
4	-13	∙05	.25	·12	-7	-23	-9	.93
5	-3	-14	·45	-28	2.7	4.0	3.2	6.0
7	-16	∙07	-66	-22	-15	⋅8	-13	2.0
9	-05	-02	-32	·15	-5	-2	-16	-65

† The 25 watt, 50 watt, and 75 watt figures were taken with perfect HT and screen supply regulation.

 \ast The 70 watt figures were obtained at maximum output with the regulation given above.

Distortion figures at 100c/s were slightly higher than at 1000c/s averaging $1\cdot1-1\cdot2$ times more.

Maximum output at 100c/s was 68 watts.

MODIFIED ZERO BIAS CLASS'B' AMPLIFIER

REF. No. 432-1

